Планеты Земной группы. Часть 2.
ЕСТЬ ЛИ ЖИЗНЬ НА МАРСЕ. Несмотря на все успехи космических и наземных методов исследования «мёртвой» природы Марса, перед астрономами неотступно стоял всё тот же давний вопрос: существует ли жизнь на Марсе? И вот уже в 1976 году американские учёные предприняли попытку решить его путём проведения тщательно продуманной серии экспериментов на поверхности Марса приборами спускаемых аппаратов «Викинг» Программа «Викинг» готовилась несколько лет, Два космических аппарата были запущены 20 августа и 9 сентября 1975 г. «Викинг-1» 19 июня 1976г., после 10 месяцев пути, вышел на ареоцентрическую орбиту, а спустя ещё месяц – 20 июля – посадочный блок совершил спуск и посадку в области Хризе. Приборы «Викинга-1» немедленно начали передачу панорамных снимков поверхности планеты. Район посадки имеет довольно ровный рельеф и представляет собой песчаную пустыню с большим количеством камней, на половину занесённых слоем тонкой пыли. Условия в месте посадки блока оказались довольно суровыми. Рентгеновский флуоресцентный спектрометр передал предварительные сведения о составе марсианской почвы:12-16% железа, 13-15% кремния, 3-8 % кальция, 2-7% алюминия, 0.5-2% титана. В месте спуска посадочного блока «Викинга-2» – в светлой области Утопия - картина оказалась почти такой же, как и в области Хризе. Такие же камни и глыбы среди песчаной пустыни, некоторые из них испещрены ямками и напоминают пемзу. Но всех в первую очередь интересовали результаты экспериментов по забору и анализу образцов грунта на присутствие микроорганизмов. 31 июля американские учёные пришли в крайнее возбуждение. Анализатор газообмена показал 15-кратное увеличение содержания кислорода по сравнению с нормой после двух часов инкубации. Спустя ещё 24 часа концентрация кислорода выросла ещё на 30%, а затем начала падать и спустя неделю упала до нуля. Во втором эксперименте часть пробы загружалась в резервуар с питательным бульоном, в котором имелись радиоактивные атомы. Анализатор детектировал выделявшиеся газы и обнаружил увеличение двуокиси углерода, почти такое же, как при анализе биологически активных образцов земной почвы. Но вскоре и в этом приборе уровень отчётов упал почти до нуля. Третий эксперимент, в котором регистрировалось поглощение изотопа углерода С14 предполагаемыми органическими соединениями марсианского грунта, 6 августа показал повышенную активность. На «Викинге-2» выделение кислорода из образцов проходило гораздо медленнее, чем на «Викинге-1». Однако американские учёные полагают, что эти результаты нельзя объяснить одними химическими реакциями. Итак, первые эксперименты «Викингов» оказались обнадёживающими в отношении гипотезы о существовании на Марсе органической жизни. Конечно, это ещё далеко не доказательство её существования. Нужны дальнейшие исследования. Можно полагать, что ближайшее будущее в исследовании Марса прямыми принадлежит автоматам. Но мы не сомневаемся ни на минуту, что когда-нибудь, и может быть, скорее, чем мы думаем, на пыльную почву Марса ступит человек, посланец нашей родной Земли. ВЕНЕРА. Венера, как и Меркурий, раскрылась перед нами в основном за последние 40 лет. Длительное время мы не знали ни давление атмосферы у поверхности планеты, ни её радиуса. Астрономические наблюдения давали лишь радиус облачного слоя, окружающего планету, в пределах от 6100 до 6200 км. Атмосфера Венеры была открыта в 1761 г. М. В. Ломоносовым при наблюдении прохождения Венеры перед диском Солнца. При схождении её с диска Солнца край последнего как бы выгнулся, образовав «пупырь». М. В. Ломоносов правильно объяснил наблюдавшееся им явление преломлением солнечных лучей в атмосфере Венеры. Это явление получило название «явление Ломоносова». В течение почти 200 лет атмосфера Венеры была непроницаемым барьером для изучения поверхности планеты и определения периода её вращения вокруг оси. 80 попыток определить этот период с помощью оптических методов потерпели полную неудачу. Не удавалось определить и наклон оси Венеры к плоскости её орбиты. Первое уверенное определение радиуса твёрдого шара Венеры было сделано в 1965 г. из радиоастрономических наблюдений с помощью радиоинтерферометра Оуэнс Вилли советским учёным А. Д. Кузьминым и американским учёным Б. Дж. Кларком, Кузьмин и Кларк получили значение 6057 км. Затем последовала большая серия радиолокационных измерений в СССР и США, в ходе которых радиус Венеры всё уточнялся. Окончательное его значение 6050 км. Масса Венеры была уточнена по пролётам мимо планеты американских космических аппаратов «Маринер-2», «Маринер-5» и «Маринер-10». Она составляет 1:408 524 массы Солнца или 84.5% массы Земли. Пол массе и размерам была уточнена средняя плотность Венеры, 5.27 г\см3, и определено ускорение силы тяжести на её поверхности, 885 см\сек2. Радиолокационные наблюдения, проводившиеся, начиная с 1961 г., в СССР, США и Англии, позволили определить, наконец, период её вращения. Он оказался самым большим в Солнечной системе:243.16 суток при обратном направлении вращения. Иначе говоря, если смотреть с северного полюса Венеры, планета вращается по часовой стрелке, а не против неё как Земля и все планеты (исключая Уран). Из за этого солнечные сутки на Венере короче звёздных и равны 117 земным суткам. Таким образом, день и ночь на Венере продолжается по 58.5 суток. Несмотря на это, температуры дневного и ночного полушарий планеты отличаются очень мало – благодаря большой теплоёмкости и интенсивному переносу тепла в плотной атмосфере Венеры. В 1932 г. У. Адамс и Т. Денхем на обсерватории Маунт Вилсон обнаружили в спектре Венеры полосы поглощения углекислого газа на длинах волн 7820, 7833 и 8689?.Полосы были весьма интенсивными, и стало ясно. Что углекислый газ – существенный компонент венерианской атмосферы. Давление атмосферы у поверхности Венерыоказалось 90 атмосфер! Такого значения никто не ожидал. В моделях атмосферы Венеры, построенных до 1967 г., давление у поверхности принималось от 5 до 20 атмосфер. Высокая температура нижних слоёв атмосферы Венеры объясняется так называемым парниковым эффектом. Атмосфера планеты пропускает солнечное излучение, правда, лишь частично и не в виде прямых лучей, а в форме многократного рассеянного излучения. Облачный слой Венеры обладает весьма высоким альбедо, 0.78, иначе говоря, более трёх четвёртой солнечной радиации отражается облаками и лишь менее одной четверти проходит вниз. Парниковый эффект имеет место и в атмосферах других планет. Но если в атмосфере Марса он поднимает среднюю температуру у поверхности на 9?, в атмосфере Земли на 35?, то в атмосфере Венеры этот эффект достигает 400 градусов! ХИМИЧЕСКИЙ СОСТАВ АТМОСФЕРЫ ВЕНЕРЫ. Венера на 97% состоит из углекислого газа (СО2). Не более 2% приходится на долю азота и инертных газов (в первую очередь аргона). В отношении содержания кислорода различные методы дают пока противоречивые результаты, но в любом случае его меньше 0.1%. Из других газов методы инфракрасной спектроскопии позволили обнаружить окись углерода (СО2) в количестве 5•10••-5 от всей массы атмосферы, хлористый водород (НСI)-4•10••-7 и фтористый водород (НF)-10••-9. Поиски других возможных компонентов венерианской атмосферы пока не привели к положительным результатам, но ни один из них не составляет более 10••-5 общего состава атмосферы. В 1927 г. наземные фотографии Венеры в ультрафиолетовых лучах выявили на диске планеты целую систему тёмных и светлых деталей. В 1960 г. французские астрономы Ш. Буайте и А. Камишель независимо друг от друга обнаружили, что расположение некоторых деталей, фотографируемых в ультрафиолетовых лучах, повторяется каждые четверо суток. Объединив свои наблюдения, они пришли к выводу, что верхний слой Венеры имеет обратное вращение с тем же периодам. Этот результат получил в дальнейшем полное подтверждение. Скорость вращения на уровне верхней границы облаков иная, чем само планеты. Это означает, что над экватором Венеры на высоте 65-70 км. Господствует постоянно дующий ветер в направлении движения планеты, имеющий скорость 100 м\сек (скорость урагана). Такая система циркуляции атмосферы была предсказана почти 250 лет назад английским метеорологом Гадлеем. На Земле её подавляют другие факторы (разность температур, влияние океанов), на Венере же океанов нет, а температуры выровнены благодаря интенсивному переносу тепла в нижних слоях. Фотографии верхнего слоя облаков Венеры с близкого расстояния были получены в феврале 1974 г. американским космическим кораблём «Маринер-10». Они так же подтвердили четырёх суточный период вращения на уровне облаков. У планеты имеется, как и у Земли, ионосфера. Дневной максимум электронной концентрации расположен на высоте 145 км. И равен 4•10••5 электронов\см3, что в 10 раз меньше, чем в нашем слое F2. На уровне 500 км. со стороны Солнца наблюдается резкий спад электронной концентрации, а на ночной стороне длинный хвост из заряженных частиц протяжённостью до 3500км. с концентрацией электронов 1000-500 электронов\см3. Такое строение ионосферы связано с обтеканием её солнечным ветром и со слабой направленностью магнитного поля Венеры (по данным Ш. Ш. Долгинова и его сотрудников оно в 10 000 раз слабее земного). Самые верхние слои атмосферы Венеры состоят почти целиком из водорода. Водородная атмосфера Венеры простирается до высоты 5500 км. Наземные американские установки дали возможность исследовать приэкваториальную область планеты. Было обнаружено около 10 кольцевых структур, подобных метеоритным кратерам Луны и Меркурия, диаметром от 35 до 150 км, но сильно сглаженных, уплощенных. Удалось обнаружить гигантский разлом в коре планеты длинной 1500 км, шириной 150 км и глубиной 2 км. Выявлен дугообразный горный массив, пересечённый и частично разрушенный другим. Это говорит в пользу наличия сбросовых движений в коре планеты. Найден вулкан с диаметром основания 300-400 км и около 1 км в высоту. Американские учёные выявили в северном полушарии планеты огромный круглый бассейн протяжённостью около 1500 км с севера на юг и 100 км с запада на восток. Был изучен рельеф 55 районов Венеры. Среди них имеются участки как сильно всхолмлённой местности, с перепадами высот на 2-3 км, так и относительно ровной. Обнаружена большая гладкая равнина длинной около 800 км, и ещё более гладкая, чем поверхность лунных морей. Поверхность Венеры в целом более гладкая, чем поверхность Луны. Фотографии поверхности Венеры показывают нам каменистую пустыню с характерными скальными образованьями. На снимке «Венеры-9» – свежая осыпь камней. Это говорит о непрекращающейся тектонической активности Венеры. Средняя плотность породы Венеры равна 2.7 г\см3, что тоже близко к плотности земных базальтов. Таким образом, можно смело сказать, что «чадра», скрывшая лик Венеры от исследований более 300 лет, сорвана, и эта планета предстала глазам учёных со сложным рельефом, следами активного вулканизма и тектонической деятельности и в то же время с явными последствиями её метеоритной бомбардировки в прошлом. МЕРКУРИЙ. Меркурий, ближайшая к Солнцу планета Солнечной системы, была для астрономов длительное время полной загадкой. Не был точно измерен период её вращения вокруг оси. Из-за отсутствия спутников не была точно известна масса. Близость к Солнцу мешала производить наблюдения поверхности. В то время как спектры планеты говорили об отсутствии у неё атмосферы, некоторые наблюдатели замечали порой какие-то «туманы», скрывавшие конфигурацию тёмных и светлых пятен, с трудом наблюдаемую на его диске. Поляриметрические наблюдения О. Дольфюса в 1950 году дали указания на наличие весьма слабой атмосферы, в 300 раз разреженнее земной. Но полной уверенности в этом не было. И вдруг, за какие-нибудь пять лет, всё изменилось, и Меркурий теперь изучен не хуже любой другой планеты Солнечной планеты. Большое значение в разрешении загадок Меркурия имел полёт американского космического аппарата «Маринер-10» в 1974-75гг. Но дело не только в этом полёте: многое о Меркурии мы смогли узнать и с помощью наземных астрономических наблюдений. Радиолокация позволила установить период вращения Меркурия. Ещё в1882 году Дж. Скиапарелли из визуальных наблюдений сделал вывод, что этот период равен периоду обращения Меркурия вокруг Солнца (88 суток), т.е., что Меркурий обращён к Солнцу одной стороной, как Луна к Земле. Около 50 лет этот период считался предположительным, а потом, уже в 30-х годах нашего столетия, вопросительный знак около значения периода был снят во всех справочниках и таблицах: фотография подтверждала период Мкипарелли. Но всё-таки он оказался неверным. В 1965 году американские радиоастрономы Р. Дайс и Г. Петтенджил с помощью 300-метрового радиотелескопа обсерватории Аресибо установили, что период обращения Меркурия равен 59.3 суток, т.е. он составляет ровно 2/3 орбитального периода. Это открытие поставило перед астрономами два совершенно разных вопроса: 1. Почему визуальные и фотографические наблюдения в течение 80 лет указывали на период 88 суток? 2. Почему период вращения равен 2/3 орбитального периода планеты? Ответ на оба вопроса оказался сравнительно прост. Три полных оборота вокруг оси Меркурий завершает за 176 суток. За тот же срок планета совершает два оборота вокруг Солнца. Таким образом, Меркурий занимает относительно Солнца то же самое положение на орбите и ориентировка шара остаётся прежней. Такое движение, как показывает теория, является устойчивым. Вращение оказывается в резонансе с орбитальным движением. Эта соизмеримость периодов и явилась причиной ошибки астрономов в определении периода вращения. Визуальные и фотографические наблюдения Меркурия возможны только около эпох элонгаций, которые повторяются через каждые 116 суток (синодический период Меркурия). Но для наблюдений планеты благоприятна не каждая элонгация: из вечерних, – т.е., что наступают зимой или весной, а из утренних, – т.е., которые бывают летом и осенью (нужно, чтобы Меркурий имел более высокое склонение, чем Солнце). Такие элонгации повторяются раз в год, точнее, раз в 348 суток. Но этот период близок к шестикратному вращению Меркурия 352 суткам. Наблюдая раз в 348 суток Меркурий, мы увидим на нём те же детали, что и год назад. Но астрономы прошлого (Скиапарелли и Антониади), встретившись с этим фактом и имея перед глазами пример Луны, обращённой к Земле одной стороной, полагали, что за это время Меркурий сделал четыре оборота вокруг оси, а не шесть. После того как недоразумение выяснилось, был сделан ряд важных уточнений. Ось Меркурия оказалась почти перпендикулярной к плоскости его орбиты. Была система счёта долгот: от 0 до 360? навстречу вращению планеты. За начальный меридиан был принят тот, который проходил через подсолнечную точку в момент прохождения Меркурия через перигелий в 1950 году (это было 11 января 1950 года). С помощью этой системы координат американские астрономы К. Чепмен и Д. Крукженк, с одной стороны, и французские астрономы О. Дольфюс и А. Камишель, - с другой, построили карты планеты, основанные на её многолетних визуальных и фотографических наблюдениях. Обе карты хорошо согласовались друг с другом и, как доказал советский планетолог Г. Н. Каттерфельд, также с картами Киаппарелли и Антониади. Уже тогда на поверхности Меркурия были заметны круглые тёмные пятна, похожие на лунные «моря», - тёмные линейные образования протяжённостью 1-2 км и разделяющие их светлые области. Но общее альбедо Меркурия оказалось крайне низким, около 0.05. ТЕМПЕРАТУРНЫЙ РЕЖИМ ПЛАНЕТЫ. Радионаблюдения планеты ещё в 1962 году показали сравнительно небольшое различие яркостных температур дневного и ночного полушарий. В 1966 году было установлено, что средняя температура диска Меркурия на волне 11 см меняется с углом фазы. Это означало, что температура ночного полушария планеты далеко не так мала, как предполагалась ранее. В 1970 году Т Мардок и Э Ней из Миннесотского университета по наблюдениям в инфракрасных лучах на волнах от 3.75 до 12 мкм установили, что средняя температура ночного полушария рана 111?К. С другой стороны, температура подсолнечной точки на среднем расстоянии Меркурия от Солнца равна 620?К. В перигелии она может достигать 690?К, а в афелии снижается до 560?К. Таков диапазон температур поверхности Меркурия. СМЕНА ДНЯ И НОЧИ. Любопытно, как происходит смена дня и ночи на Меркурии. Солнечные сутки там равны общему наименьшему кратному из периодов вращения и обращения, т.е. 176 земным суткам. День и ночь продолжается по 88 суток, т.е. равны году планеты! Солнце восходит на востоке, поднимается крайне медленно (в среднем на один градус за двенадцать часов), достигает верхней кульминации (на экваторе – зенита) и так же медленно заходит. Но так происходит не на всех долготах. На долготах, близких к 90 и 270?, наблюдается весьма странная и, пожалуй, единственная в Солнечной системе картина. На этих долготах восход и заход Солнца совпадают по времени с прохождением Меркурия через перигелий, когда на короткое время (8суток) угловая скорость орбитального движения планеты превышает угловую скорость орбитального движения планеты превышает угловую скорость её вращения. Солнце на небе планеты описывает петлю, как сам Меркурий на небе Земли. На указанных долготах Солнце после восхода вдруг останавливается, поворачивается обратно и заходит почти в той же точке, где взошло. Но спустя несколько земных суток Солнце восходит снова в той же точке и уже надолго. Около захода картина повторяется в обратном порядке. Но самое интересное, что удалось узнать о Меркурии, это вид его поверхности. Когда космический аппарат «Маринер-10» передал первые снимки Меркурия с близкого расстояния, астрономы всплеснули руками: перед ними была вторая Луна! Поверхность Меркурия оказалась усеянной кратерами разных размеров, совсем как поверхность Луны. Их распределение по размерам тоже было аналогично лунному. На поверхности планеты были обнаружены гладкие округлые равнины, получившие, по сходству с лунными «морями» название бассейнов. Наибольший из них, Калорис, имеет в диаметре 1300 км (океан Бурь на Луне – 1800 км). На основании анализа фотографий Меркурия американские геологи П. Шульц и Д. Гаулт предложили следующую схему эволюции его поверхности. После завершения процесса аккумуляции и формирования планеты её поверхность была гладкой. Далее наступил процесс интенсивной бомбардировки планеты остатками до планетного роя, во время которой образовались бассейны типа Калорис, а так же кратеры типа Коперника на Луне. Следующий период характеризовался интенсивным вулканизмом и выходом потока лавы, заполнявшей крупные бассейны. Этот период завершился около 3 млрд. лет назад (возраст планет Солнечной системы известен довольно точно и равен 4.6млрд. лет). Данные об атмосфере Меркурия указывает лишь на её сильную разрежённость. По радио заметному эксперименту плотность атмосферы на дневной стороне Меркурия не превышает 10••6 молекул\см3, наблюдения с ультрафиолетовым спектрометром дают давление у поверхности 10••-12 бар (1 бар почти равен давлению в 1 атмосферу), что примерно соответствует плотности 10••7молекул.см3 у поверхности. Из них около 0.1% приходится на долю гелия, наличие которого установлено по ультрафиолетовому спектру. Обнаружены небольшие количества водорода и кислорода. Подозревается так же присутствие СО 2 и СО. Приборы «Маринера-10» установили наличие у планеты слабого магнитного поля – около 100 гамм на расстоянии 450 км. Тщательное изучение магнитного поля планеты показало, что оно имеет более сложную структуру, чем земное кроме дипольного (двухполюсного), в нём присутствуют ещё поля с четырьмя и восемью полюсами с относительной напряжённостью 1:0.4:0.3 (у Земли 1:0.14:0.09). Со стороны Солнца магнитосфера Меркурия сильно сжата под действием солнечного ветра. Пролёты «Маринера-10» мимо Меркурия позволили уточнить его массу 1\6 023 600 солнечной или 0.054 массы Земли, а так же среднюю плотность. 5.45 г\см3, т.е. Меркурий по плотности занимает второе место в Солнечной системе, уступая только Земле. Диаметр Меркурия составляет 4879 км. Высокая плотность и наличие магнитного поля показывает, что у Меркурия должно быть плотное железистое ядро. По расчётам С. В. Козловской, плотность в центре Меркурия должна достигать 9.8 г\см3. Радиус ядра, по данным американских учёных, составляет 1800 км (75% радиуса планеты). На долю ядра приходится 80% массы Меркурия. Несмотря на медленное вращение планеты, большинство специалистов считает, что её магнитное поле возбуждается тем же динамо механизмом, что и магнитное поле Земли. Вкратце этот механизм сводится к образованию кольцевых электрических токов в ядре планеты при её вращении, которые и генерируют магнитное поле. Выяснение происхождения магнитного поля Меркурия может иметь большое значение для проблемы планетарного механизма в целом. ЗЕМЛЯ. Земля кажется нам такой огромной, такой надёжной и так много значит для нас, что мы не замечаем её второстепенного положения в семье планет. Слабое единственное утешение состоит в том, что Земля - наибольшая из планет земной группы. К тому же она обладает атмосферой средней мощности, значительная часть земной поверхности покрыта тонким неоднородным слоем воды. А вокруг неё вращается величественный спутник, диаметр которого равен четверти земного диаметра. Однако этих аргументов вряд ли достаточно для того, чтобы поддерживать наше космическое самомнение. Крошечная по астрономическим масштабам, Земля – это наша родная планета, и поэтому она заслуживает самого тщательного изучения. После кропотливой и упорной работы десятков поколений учёных было неопровержимо доказано, что Земля вовсе не «центр мироздания», а самая обыкновенная планета, т.е. холодный шар, движущийся вкруг Солнца. В соответствии с законами Кеплера Земля обращается вокруг Солнца с переменной скоростью по слегка вытянутому эллипсу. Ближе всего к солнцу она подходит в начале января, когда в Северном полушарии царит зима, дальше всего отходит в начале июля, когда у нас лето. Разница в удалении Земли от Солнца между январём и июлем составляет около 5 млн. км. Поэтому зима в северном полушарии чуть-чуть теплее, чем в Южном, а лето, наоборот, чуть-чуть прохладнее. Это явственнее всего даёт себя знать в Арктике и в Антарктиде. Эллиптичность орбиты Земли оказывает на характер времён года лишь косвенное и очень незначительное влияние. Причина смены времён года кроется в наклоне земной оси. Ось вращения Земли расположена под углом в 66.5? к плоскости её движения вокруг Солнца. Для большинства практических задач можно принимать, что ось вращения Земли перемещается в пространстве всегда параллельно самой себе. На самом же деле ось вращения Земли, или, что-то же самое, ось мира, поскольку они параллельны, описывает на небесной сфере малый круг, совершая один полный оборот за 26 тыс. лет. В ближайшие сотни лет северный полюс мира будет находиться недалеко от Полярной звезды, затем начнёт удаляться от неё, и название последней звезды в ручке ковша Малой Медведицы – Полярная – утратит свой смысл. Через 12 тыс. лет полюс мира приблизится к самой яркой звезде северного неба – Веге из созвездия Лиры. Описанное явление носит название прецессии оси вращения Земли. Обнаружил явление прецессии уже Гиппарх, который сравнил положения звёзд в своём каталоге с составленным задолго до него звёздным каталогом Аристилла и Тимохариса. Сравнение каталогов и указало Гиппарху на медленное перемещение оси мира. Различают три наружных оболочки Земли: литосферу, гидросферу и атмосферу. Под литосферой понимают верхний твердый покров планеты, который служит ложем океана, а на материках совпадает с сушей. Гидросфера – это подземные воды, воды рек, озер, морей и, наконец, Мирового океана. Вода покрывает 71% всей поверхности Земли. Средняя глубина Мирового океана 3900 м. ДВИЖУТСЯ ЛИ МАТЕРИКИ ЗЕМЛИ? Альфред Вегенер, начинающий немецкий геофизик, подметил сходство в очертаниях земных материков по обе стороны Атлантики. Убедиться в этом не составляет труда каждому: достаточно взглянуть на глобус. Если мысленно пододвинуть Северную и Южную Америки к берегам Европы и Африки, то они сольются воедино точно так же, как в руках археологов складываются в одно целое черепки разбитой греческой амфоры. А что если, вообразил Вегенер, некогда на Земле в действительности существовал один-единственный материк? Потом он был расколот на куски, и осколки дрейфовали, отодвигаясь, друг от друга до тех пор, пока заняли современное взаимное расположение. В этом случае Атлантический океан представляет собой не то, что иное, как рану на теле Земли: след гигантского разлома, по одну сторону от которого «отплывают» Северная и Южная Америки, по другую – Евразия и Африка. Догадка Вегенера была высказана в начале нашего века. Большинство учёных приняло её в штыки. Главное возражение состояло в том, что науке не известны силы, которые могли бы приводить в движение по поверхности планеты, словно льдины на озёрной глади, такие громадные образования, как материки. Над сходством береговых линий посмеялись как над курьёзом. Сегодня гипотеза Вегенера о дрейфе материков обрела новую жизнь, причём многие черты её заметно преобразились. Из глубин Земли к поверхности планеты, считают геофизики, поднимается поток вещества, который образует длинное центральное поднятие – Срединно-Атлантический хребет и далее растекается от него в обе стороны. Растекающиеся по обе стороны от Срединно-Атлантического хребта глубинное вещество Земли обусловливает удаление друг от друга, с одной стороны хребта Северной и Южной Америк, с другой – Евразии и Африки. Процесс этот медленный, он длится сотни миллионов лет. Те побережья материков, которые «плывут» первыми, как носовая часть корабля, сминаются в складки. В результате на материках вдоль этих побережий образуются протяжённые горные хребты: Скалистые горы и Кордильеры в Америке, Драконовы горы в Африке. Сверхглубокая скважина на Кольском полуострове – дерзкий вызов природе, фантастический рекорд, уникальное достижение науки и техники. Но много ли это или мало по сравнению с размерами Земли? Уподобим для сравнения тело Земли телу человека. Это значит, что глубочайшая скважина Земли как средство зондажа строения её недр, будучи соответственно отнесена к размерам тела человека, гораздо меньше глубины укуса комара. ТРИНАДЦАТЬ ДВИЖЕНИЙ ЗЕМЛИ. Прежде чем подробно рассмотреть те движения нашей планеты, которые имеют непосредственное отношение к её недрам, представим общую картину очень сложно движущейся Земли. Некоторые из этих движений быстры и заметны, другие, наоборот, почти неощутимо медленны. Их совокупность демонстрирует на примере Земли ту вечную изменчивость, которая свойственна всему мирозданию и является общим свойством материи. Главной силой, определяющей все эти движения, служит гравитация – притяжение Земли другими телами космоса. Трудно поверить, что такое огромное тело, как земной шар, весящий 6 000 000 000 000 000 000 000 тонн, одновременно участвует в самых разнообразных движениях. Однако существование этих движений твёрдо установлено современной наукой. Два движения Земли известны с давних времён – это вращение вокруг собственной оси и обращение вокруг солнца. Известно немало доказательств вращения Земли. Так, например, если с высокой башни бросить камень, то при падении он расколется к востоку, т.е. в том же направлении, в котором вращается Земля. Все движения в природе в той или иной степени неравномерны. Например, второе движение Земли вокруг Солнца. Оно совершается по эллипсу. Когда Земля проходит через перигелий – ближайшую к Солнцу точку своей орбиты, нас отделяет от Солнца почти 147 млн. км. Через полгода расстояние от Земли до Солнца становится близким к 152 млн. км. Скорость движения Земли всё время меняется. Вблизи Солнца она увеличивается, с удалением от него – уменьшается. В среднем же Земля летит по своей орбите в 36 раз быстрее пули – 30 километров в секунду. Но эта скорость кажется огромной лишь по земным мерам расстояний. Если бы мы смогли откуда-то из вне с большого расстояния следить за орбитальным движениям земного шара, он показался бы нам более медлительным, чем черепаха: за один час земной шар проходит путь, в девять раз превышающий его диаметр между тем как черепаха за один час покрывает расстояние, равное нескольким десяткам её поперечников. Земной шар часто сравнивают с волчком. Такое сравнение имеет более глубокий смысл, чем иногда кажется. Если раскрутить волчок, а потом слегка толкнуть его ось – она начнёт описывать конус, причём со скоростью, значительно меньшей скорости вращения волчка. Это движение называется прецессией. Оно свойственно и земному шару, являясь его третьим движением. Луна вызывает ещё одно, гораздо менее значительное, четвёртое движение Земли. Из-за воздействия Луны на различные точки земного эллипсоида земная ось описывает маленький конус с периодом в 18.6 года. Благодаря этому движению, называемому нутацией небесный полюс вычерчивает на фоне звёздного неба крошечный эллипс, у которого наибольший диаметр близок к 18 секундам дуги, а наименьший – около 14 секунд. Во всех учебников географии подчёркивается, что наклон оси Земли к плоскости её орбиты всегда остаётся неизменным. Строго говоря, это не совсем точно. Земля, хотя и крайне медленно всё же «покачивается», и наклон земной оси слегка меняется. Впрочем, это пятое движение Земли мало ощутимо. Не остаётся неизменной и форма земной орбиты. Её эллипс становится то более, то менее вытянутым. В этом заключается шестое движение земного шара. Прямая, соединяющая ближайшую и наиболее отдалённую от Солнца точки орбиты Земли, называется линией апсид. В её медленном повороте выражается седьмое движение Земли. Из за этого меняются сроки прохождения Земли через перигелий. В настоящую эпоху максимальное сближение Солнца и Земли приходится на 3 января. За 4000 лет до нашей эры Земля проходила через перигелий 21 сентября. Это снова повторится лишь в 17000 году. Выражение «Луна обращается вокруг земли» не совсем точно. Дело в том, что Земля притягивает луну, а Луна Землю, поэтому оба тела движутся вокруг общего центра тяжести. Если бы массы Земли и Луны были одинаковы, то этот центр находился бы по середине между ними, и оба небесных тела обращались бы вокруг по одной орбите. На самом же деле Луна в 81 раз легче Земли, и центр тяжести системы Земля Луна в 81 раз ближе к Земле, чем к Луне. Он отстоит на 4664 километра от центра Земли в сторону Луны, т.е. находится внутри Земли почти в 1700 километрах от неё поверхности. Вот вокруг этой точки происходит восьмое движение Земли. Если бы вокруг Солнца обращалась только Земля, оба тела описывали бы эллипсы вокруг общего неподвижного центра тяжести. Однако в действительности притяжение Солнца другими планетами заставляет этот центр двигаться по очень сложной кривой. Ясно, что эго движение отражается и на Земле, порождая ещё одно девятое её движение. Наконец, сама Земля весьма чутко реагирует на притяжение всех других планет Солнечной системы. Их общее воздействие отклоняет Землю с её простого эллиптического пути вокруг Солнца и вызывает все те неправильности в орбитальном движении Земли, которые астрономы называют возмущениями. Движение Земли под действием притяжения планет является её десятым движением. Установлено, что звёзды несутся в пространстве со скоростью в десятки, а иногда и сотни километров в секунду. Наше солнце и в этом проявляет себя как рядовая звезда. Вместе со всей солнечной системой, в том числе и Землёй, оно летит в направлении созвездия Геркулеса со скоростью около 20 километров в секунду, перемещение Земли относительно ближайших к Солнцу звёзд называется одиннадцатым её движением. Долог путь Солнца вокруг галактического ядра. Солнечная система завершает его почти за 200 млн. лет – такова продолжительность «галактического года»! Полёт Земли в пространстве вместе с Солнцем вокруг центра Галактики – двенадцатое её движение дополняется тринадцатым движением всей нашей звёздной системы Галактики относительно ближайших к ней и известных нам других галактик. Перечисленные тринадцать движений Земли вовсе не исчерпывают всех её движений. В бесконечной Вселенной каждое из небесных тел, строго говоря, участвует в бесчисленном множестве различных относительных движений. ХИМИЧЕСКИЙ СОСТАВ ВОЗДУХА. Компонент Содержание по объёму, % Азот 78.08 Кислород 20.95 Аргон 0.93 Углекислый газ (СО2) 0.03 Неон 0.0018 Гелий 0.0005 Метан (СН4) 0.0002 Криптон 0.0001 Сернистый газ (СО2) 0.0001 Водород 0.0005 Водяной пар (Н2О) 0.2-0.4 Другие газы и пыль Следы ЕДИНСТВЕННЫЙ СПУТНИК ЗЕМЛИ – ЛУНА. Давно минули те времена, когда люди считали, что таинственные силы Луны оказывают влияние на их повседневную жизнь. Никто больше не пытается приписать Луне свои успехи или обвинить её в своих неудачах. Но Луна действительно оказывает разнообразное влияние на Землю, которое обусловлено простыми законами физикии прежде всего динамики. Самая удивительная особенность движения Луны состоит в том, что скорость её вращения вокруг оси совпадает со средней угловой скоростью обращения вокруг Земли. Поэтому Луна всегда обращена к Земле одним и тем же полушарием. Поскольку Луна - ближайшее небесное тело её расстояние от Земли известно с наибольшей точностью, до нескольких сантиметров по измерениям при помощи лазеров и лазерных дальномеров. Наименьшее расстояние между центрами Земли и Луны равно 356 410 км. Наибольшее расстояние Луны от Земли достигает 406 700 км, а среднее расстояние составляет 384 401 км. Земная атмосфера искривляет лучи света до такой степени, что всю Луну (или Солнце) можно видеть ещё до восхода или после заката. Дело в том, что преломление лучей света, входящих в атмосферу из безвоздушного пространства, составляет около 0.5?, т.е. равно видимому угловому диаметру луны. Таким образом, когда верхний край истинной Луны находится чуть ниже горизонта, вся Луна видна над горизонтом. Из приливных экспериментов был получен другой удивительный результат. Оказывается Земля – упругий шар. До проведения этих экспериментов обычно считали, что Земля вязкая, подобно патоке или расплавленному стеклу; при небольших искажениях она должна была бы, вероятно, сохранять их или же медленно возвращаться к своей исходной форме под действием слабых восстанавливающих сил. Эксперименты показали, что Земля в целом придаётся приливообразующим силам и сразу же возвращается к первоначальной форме после прекращения их действия. Таким образом, Земля не только твёрже стали, но и более упругая. Мы познакомились с современным состоянием нашей планеты и планет Земной группы. Будущее нашей планеты, да и всей планетной системы, если не произойдёт ничего непредвиденного, кажется ясным. Вероятность того, что установившийся порядок движения планет будет нарушен какой-нибудь странствующей звездой, невелика, даже в течение нескольких миллиардов лет. В ближайшем будущем не приходится ожидать сильных изменений в потоке энергии Солнца. Вероятно, могут повториться ледниковые периоды. Человек способен изменить климат, но при этом может совершить ошибку. Континенты в последующие эпохи будут подниматься и опускаться, но мы надеемся, что процессы будут происходить медленно. Время от времени возможны падения массивных метеоритов. Но в основном Солнечная система будет сохранять свой современный вид. | |
| |
Просмотров: 5447 | |
Всего комментариев: 0 | |