Планеты Земной группы. Часть 1.
Среди многочисленных небесных светил, изучаемых современной астрономией, особое место занимают планеты. Ведь все мы хорошо знаем, что Земля, на которой мы живем, является планетой, так что планеты-тела, в основном подобные нашей Земле. Но в мире планет мы не встретим даже двух, совершенно похожих друг на друга. Разнообразие физических условий на планетах очень велико. Расстояние планеты от Солнца (а значит, и количество солнечного тепла, и температура поверхности), её размеры, напряжение силы тяжести на поверхности, ориентировка оси вращения, определяющая смену времён года, наличие и состав атмосферы, внутреннее строение и многие другие свойства различны у всех девяти планет Солнечной системы. Говоря о разнообразии условий на планетах, мы можем глубже познать законы их развития и выяснить их взаимосвязь между теми или иными свойствами планет. Так, например, от размеров, массы и температуры планеты зависит её способность удерживать атмосферу того или иного состава, а наличие атмосферы в свою очередь влияет на тепловой режим планеты. Как показывает изучение условий, при которых возможно зарождение и дальнейшее развитие живой материи, только на планетах мы можем искать признаки существования органической жизни. Вот почему изучение планет, помимо общего интереса, имеет большое значение с точки зрения космической биологии. Изучение планет имеет большое значение, кроме астрономии, и для других областей науки, в первую очередь наук о Земле-геологии и геофизики, а также для космогонии-науки о происхождении и развитии небесных тел, в том числе и нашей Земли. Современные представления о планетах сложились не сразу. Для этого понадобилось много веков накопления и развития знаний и упорной борьбы новых, прогрессивных знаний с взглядами старыми, отживающими. В древних представлениях о Вселенной Земля считалась плоской, а планеты рассматривались лишь как светящиеся точки на небесном своде, отличавшиеся от звёзд только тем, что они перемещались между ними, переходя из созвездия в созвездие. За это планеты и получили название, означающее «блуждающие». Наблюдателям древности было известно пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн. Даже после того как была установлена шарообразная форма Земли, и были впервые определены её размеры (Эратосфеном в III в. до н. э.), после того как стала очевидна ограниченность Земли в пространстве, о природе планет ни чего не было известно. И всё же во взглядах выдающихся мыслителей древности: Анаксагора, Демокрита, Эпикура, Лукреция мы встретим идеи о материальности и бесконечности Вселенной, заполненной бесчисленным количеством миров, подобных нашему, причём многие из них могут быть населены живыми существами. Эти мыслители высказывали весьма интересные идеи и о природе небесных тел. Начиная с IV в. до н. э. господствующим в науке стало мировоззрение Аристотеля, согласно которому Земля находится неподвижно в центре мира, а Солнце, Луна, планеты и звёзды обращаются вокруг неё. Такое представление получило название «геоцентрическое». Геоцентрическая система мира просуществовала в науке почти 2000 лет. Как известно, любая из планет перемещается по небу среди звёзд вдоль эклиптики - большого круга небесной сферы, который описывает центр солнечного диска в течение года. Большую часть времени планеты движутся в ту же сторону, что и Солнце (прямым движением). Но время от времени планеты изменяют прямое движение на иное, направленное в сторону, противоположную видимому годичному движению Солнца. Попятное продолжается от трёх недель (для Меркурия) до 4.5 месяцев (для Сатурна) и затем снова сменяется прямым движением, так что планета как бы описывает на небе петлю. Лишь в середине 16 в. великий польский учёный Николай Коперник высказал замечательную идею о том, что Земля вовсе не является центром мира, а обращается вокруг Солнца так же, как и другие планеты. Гениальная книга Коперника «Об обращении небесных сфер», вышедшая в 1543 г., в корне изменила представления об устройстве Солнечной системы и о движении планет и Земли. Рассматривая Землю как небесное тело, которое наряду с другими планетами обращается вокруг Солнца, Коперник своими трудами подготовил логический вывод о том, что не только характер движения, но и сама природа планет и Земли должна быть одинакова. Этот вывод был сделан выдающимся последователем Коперника итальянским мыслителем Джордано Бруно и подтверждён в результате телескопических открытий Галилея. Так постепенно складывалось правильное представление о природе планет. Теперь мы знаем, что планеты, в том числе и Земля, представляет собой тёмные, несамосветящиеся тела, освещаемые Солнцем и отражающие его лучи. Такое определение небесных тел распространить не только на планеты нашей Солнечной системы, но и на системы других звёзд, ибо каждая звезда тоже представляет собой Солнце, и около неё также могут обращаться планеты. Отличить на небе планету от звезды можно по целому ряду признаков. Прежде всего, планеты перемещаются между звёздами, однако их перемещение можно заметить лишь проводя наблюдения в течение нескольких вечеров. Такие планеты, как Венера и Юпитер, легко распознать, так как по блеску они намного превосходят самые яркие из звезд. Отличительным признаком каждой планеты является её цвет: у Венеры он белый, у Марса – красноватый, у Юпитера – желтовато-белый, у Сатурна – жёлтый. Отличить планету от звезды можно ещё благодаря тому, что все звёзды мерцают, а планеты обычно светят ровным, почти немигающим блеском. Как известно мерцание звёзд вызывается колебаниями воздуха, сквозь который проходят лучи на пути к глазу наблюдателя. Но звёзды даже в самые сильные телескопы представляются точками, а планеты имеют заметные видимые размеры, так как они гораздо ближе к нам, чем звёзды. Каждая точка диска планеты тоже как бы мерцает т.е. изменяет свой блеск, но при этом усиление блеска в одной токе сопровождается ослаблением его в другой. В результате эти «мерцания» отдельных точек планетного диска, складываясь, создают постоянную во времени яркость каждого участка диска, и свет от диска в целом тоже получается неизменным. Но чтобы не только уметь отличать планеты от звёзд, но и различать их друг от друга и находить на небе, надо хорошо знать звёздное небо – основные созвездия и яркие звёзды, особенно так называемые зодиакальные созвездия, по которым передвигается Солнце, Луна и планеты. Таких созвездий двенадцать. Все планеты делятся на нижние и верхние. К нижним планетам относятся Меркурий и Венера, которые в своём видимом движению по небу никогда не отходят далеко от Солнца. Угол наибольшего видимого удаления (элонгация) нижней планеты от Солнца зависит от соотношения радиусов орбит планеты и Земли. Эпохи наибольших элонгаций – лучшее время для наблюдения Меркурия и Венеры. Верхние планеты (Марс, Юпитер, Сатурн, Уран, Нептун, Плутон) могут наблюдаться на любом расстоянии от Солнца – до 180° включительно. Деление планет на нижние и верхние было сделано сначала на основе различия их видимого движения по небу. Но уже Коперник объяснил это различие тем, что нижние планеты расположены ближе к Солнцу, чем Земля, а верхние планеты - дальше. Эклиптикальная система координат представляет собой одну из систем небесных координат, определяющих положение светила на небесной сфере. В этой системе основной плоскостью является плоскость эклиптики, т.е. видимого годичного пути центра диска Солнца, направленная плоскости Земной орбиты. Положение светил на небесной сфере в этой системе измеряется долготой и шириной. Долгота светил измеряется дугой эклиптики от точки весеннего равноденствия (пересечения эклиптики с экватором) до точки пересечения эклиптики с большим кругом, проходящем через полюс эклиптики и светило. Направление отсчёта долготы противоположно направлению суточного вращения неба. Широта отсчитывается по кругу широты от эклиптики в обе стороны (от 0° до 90°). Эклиптикальная система координат наиболее удобна для изучения видимых движений планет и Луны, так как они обычно недалеко отходят от эклиптики. Соединения бывают нижние, когда планета находится между Землёй и Солнцем, и верхние, когда планета находится за Солнцем. Ясно, что в нижнем соединении могут быть только нижние планеты, тогда как в верхнем - все планеты. Близ нижнего соединения, когда нижняя планета обгоняет Землю в её движении вокруг Солнца, и также описывает «петлю» Показаны основные конфигурации (положения) нижних и верхних планет относительно Солнца и Земли. Для верхних планет показаны также квадратуры. Так называются положение планет, когда она отстоит от Солнца на 90. Нетрудно понять, что когда верхняя планета находится в квадратуре, Земля для неё будет в наибольшей элонгации. Точно так же, если планета находится в противостоянии, то с точки зрения наблюдателя, находящегося на этой планете, Земля будет в нижнем соединении с Солнцем. МАРС Вряд ли какая-нибудь планета вызвала у людей столько споров и дискуссий, как Марс. Спорили не только учёные, но и люди самых различных профессий, занятий, возрастов. Совершенствовались методы исследований, сменяли друг друга астрономы разных поколений, изменялся и сам характер дискуссий. В десятых-двадцатых годах нашего века спорили главным образом о каналах Марса, о наличии там разумных обитателей (марсиан). В пятидесятых годах много спорили о существовании на Марсе растительности и вообще органической жизни. Какой планете посвящено наибольшее число фантастических романов, повестей, рассказов? Конечно, Марсу. Фантазия писателей подогревала интерес широкой публики к природе загадочной планеты. Астрономов забрасывали вопросами. А они, исследователи Вселенной, проводили ночи напролёт наедине с красной планетой. Сначала вписываясь в неё глазами, усиленными оптикой телескопов, затем, снимая её на чувствительные фотопластинки, стремясь запечатлеть вид планеты и её спектр, наконец, поглядывая на перья самописцев, следя за сменой цифр на табло электронных регистраторов, за работой приборов, принимающих изображения планеты от космических аппаратов. Шли годы и десятилетия, менялись методы исследований, накапливались наши знания о природе красной планеты, на место одних загадок вставали другие, росло число учёных, стремившихся проникнуть в тайны Марса. Первые наблюдения Марса проводились ещё до изобретения телескопа. Это были позиционные наблюдения. Их целью было определение точных положений планеты по отношениям к звёздам. Такие наблюдения проводил ещё Коперник, стараясь подкрепить ими свою гелиоцентрическую систему мира. Точность наблюдений Коперника составляла около одной минуты дуги. Значительно более точными были наблюдения знаменитого датского астронома Тихо Браге; их точность достигала до 10 секунд дуги. За свою долгую жизнь Тихо пронаблюдал десять противостояний Марса, накопив непрерывный ряд наблюдений за 22 года. Этот ценнейший материал попал после смерти Тихо в самые верные руки - в руки Иоганна Кеплера, прекрасного вычислителя, человека широких взглядов. Обработка наблюдений положений Марса, выполненных Тихо Браге, привела Кеплера к открытию трёх его знаменитых законов движения планет. Как хорошо, что для выяснения законов движения планет и формы их орбит был выбран именно Марс, а, скажем, не Венера. Орбита Марса имеет эксцентриситет 0,093, тогда как орбита Венеры - только 0,007, в 13 раз меньше. Быть может, имея дело с наблюдениями Венеры или Юпитера, Кеплер не открыл бы свой первый закон, не обнаружил бы отличия орбиты планеты от окружности. И всё же выбор Марса не был делом случая. Наблюдать Венеру очень трудно, так как эта планета не отходит от Солнца далее 48°, наблюдается на светлом небе и её положение трудно привязывать к положениям неподвижных звёзд. С другой стороны, Юпитер и Сатурн движутся по небу очень медленно, так как находятся относительно далеко от Земли. Марс же близок к Земле, сравнительно быстро перемещаться среди звёзд, его можно наблюдать на фоне звёздного неба на любых угловых расстояниях от Солнца он описывает довольно широкие петли около эпохи противостояния. Элементы орбиты Марса, найденные Кеплером, мало отличались от современных. Например, большая полуось орбиты по Кеплеру равнялась 1,5264 астрономической единицы ( а. е. ), тогда как современное её значение 1,5237 а. е. Эксцентриситет орбиты Марса по Кеплеру равен 0.0934. Уже из приведённых чисел видно, что Марс расположен от Солнца в полтора раза меньше, и, значит, получает от Солнца в 2,3 раза меньше света и тепла. Расстояние Марса от Солнца составляет в среднем 228 млн. км, тогда как Земля отстоит от дневного светила на 150 млн. км. Благодаря большому эксцентриситету орбиты Марс может изменять своё расстояние от Солнца в довольно широких пределах. Чтобы найти, на сколько расстояние в ближайшей к Солнцу точке орбиты, перигелии, меньше среднего, надо помножить среднее расстояние на эксцентриситет. Получим: 228 ? 0,093 = 21 млн. км. Кратчайшее расстояние Марса от Солнца равно 207 млн. км, а наибольшее-249 млн. км. Эти величины относятся как 1/1,2 , а поток солнечного света и тепла на единицу поверхности Марса в перигелии и афелии как 1,44/1. Чтобы понять, как можети зменяться положение Марса относительно, Земли, рассмотрим основные конфигурации этой планеты. Пусть Земля при движении по орбите вокруг Солнца S находится в положении Т . На орбите Марса отметим четыре важных положения планеты: соединение К, когда планета находится за Солнцем, на продолжении прямой ТS, квадратуры Q1 и Q2, когда угол между направлениями на Солнце и планету равен 90°, и противостояние О, когда планета находится снова на продолжении прямой ТS, но в направлении, противоположном Солнцу (отсюда и выражение противостояние) Легко видеть, что в противостоянии планета расположена ближе всего к Земле, а в соединении расстояние между ними максимально. Поэтому эпоха соединения - самый неблагоприятный период для наблюдения Марса, а эпоха противостояния, наоборот, самый благоприятный. По условиям видимости не все противостояния равноценны по двум причинам. Во-первых, из-за эксцентриситета орбиты Марса его расстояние от Земли в момент противостояния может меняться от 56 до 100 млн. км. Во-вторых, склонение, а значит, и высота планеты над горизонтом различны для разных противостояний. Те противостояния, при которых расстояние до Марса не превышает 60 млн. км, принято называть великими. Очевидно, в период великих противостояний Марс должен быть вблизи перигелия. Если соединить перигелий орбиты Марса с Солнцем прямой линией, то она пересечёт орбиту Земли в той точке, которую Земля проходит 29 августа. Поэтому даты великих противостояний Марса приходятся обычно на август или сентябрь (исключением был 1939 г., когда великое противостояние наступило 23 июля). Великие противостояния следуют с интервалом 15 или 17 лет. Чтобы понять существующую здесь закономерность, вспомним, что период обращения Марса вокруг Солнца равен 287 суткам. Синодический период планеты, т.е. интервал от одного противостояния до следующего, определяется по формуле 1/s=1/т-1/р, где Р=687 сут.- год Марса, Т=365,25 сут. - год Земли. Из этой формулы находим S=780 суткам, т.е. синодический период Марса равен 2 годам 50 суткам. Марс вращается вокруг своей оси почти так же, как и Земля: его период вращения равен 24 час. 37 мин. 23 сек., что на 41 мин.19 сек. Больше периода вращения Земли. Ось вращения наклонена к плоскости орбиты на угол 65°, почти равный углу наклона земной оси (66,5°). Это значит, что смена дня и ночи, а так же смена времён года на Марсе протекает почти так же, как на Земле. Там есть и тепловые пояса ,подобные земным . Но есть и отличия. Прежде всего, из-за удалённости от Солнца климат, вообще суровее Земного. Далее год Марса почти вдвое длиннее земного, а значит, дольше длятся и сезоны. Наконец из-за эксцентриситета орбиты длительность и характер сезонов заметно отличаются в северном и южном полушариях планеты. Таким образом, в северном полушарии лето долгое, но прохладное , а зима короткая и мягкая, тогда как в южном полушарии лето короткое, но тёплое, а зима долгая и суровая. Масса Марса была довольно точно определена по движению его спутников Фобоса и Деймоса, а теперь уточнена по движению искусственных спутников серии «Маринер». Она равна 1:3 098 700 доле массы Солнца, или 0,107 массы Земли, или 6,42?10*26г. Отсюда средняя плотность Марса получается 3,89 г\см*3, ускорение силы тяжести на его поверхности на экваторе 372 см \ сек*2 (0,38 Земного) и критическая скорость, достаточная для преодоления притяжения планеты, 5,0 км \ сек. Таковы общие характеристики Марса как планеты, которые во многом определяют условия на Марсе: состояние его атмосферы, климат, ветровой режим. СПУТНИКИ МАРСА 11 и 17 августа 1877 г. Асаф Холл на Вашингтонской обсерватории открыл два маленьких спутника Марса – Фобос и Деймос. Размеры их дисков были не различимы ни в один телескоп, а блеск в среднем противостоянии соответствовал 11,6 и 12,8 звёздной величины. Это свидетельство об их весьма малых размерах. Блеск Марса в среднем противостоянии равен –1,65 , звёздной величины, значит, Марс в 200 000 раз ярче Фобоса и в 600 000 раз ярче Деймоса. Отсюда следует, что диаметры обоих спутников меньше диаметра Марса в 450 и 770 раз соответственно, т.е. раны 15 и 9 км. В действительности, как показали фотографии «Маринера-9» в 1971 году , оба спутника больше. Фобос имеет размеры 27 на 20 км , Деймос 15 на 11 км. Недооценка размеров спутников получилась потому, что их поверхность оказалась темнее Марсианской. Периоды обращения спутников вокруг планеты составляют 7 час. 39 мин. у Фобоса и30 час. 21 мин. у Деймоса, их расстояние от центра планеты 9400 и 23500км. Орбиты почти круговые, их наклон к экватору Марса у Фобоса 1°, у Деймоса 2,7°. Таким образом, Фобос совершает обращение вокруг планеты втрое быстрее, чем сам Марс вращается вокруг своей оси. За сутки Марса Фобос успевает совершить три полных оборота и успевает пройти ещё дугу в 78°. Для Марсианского наблюдателя он восходит на западе и заходит на востоке. Между последовательными верхними кульминациями Фобоса проходит 11 часов 07 минут. Совсем иначе движется по небу Деймос. Его период обращения больше периода вращения Марса, но ненамного. Поэтому он хотя и «нормально» восходит на востоке и заходит на западе, но движется по небу Марса крайне медленно. От одной верхней кульминации до следующей проходит 130 часов – пять с лишним суток ! В 1945 г. американский астроном Б. Шарплес обнаружил вековое ускорение в движении Фобоса по орбите. Это означало, что Фобос, строго говоря, движется по очень пологой спирали, постепенно приближаясь к поверхности Марса. Если так будет продолжаться и дальше, то через 15 млн. лет – срок с космогонической точки зрения весьма небольшой – Фобос упадёт на Марс. Однако только через 14 лет на это обратили внимание. К тому времени появились небесные тела, двигавшиеся точно таким же образом. Это были первые искусственные спутники Земли. Торможение в земной атмосфере заставило их снижаться, а приближение к центру Земли вызвало ускорение их движения. Известный советский учёный И. С. Шкловский попытался в 1959г. подсчитать, не может ли торможение в самых верхних слоях атмосферы Марса, быть причиной векового ускорения Фобоса. Результат был неожиданным: это возможно только в том случае если Фобос… полый. Тогда он, подобно воздушному шару, будет испытывать заметное сопротивление окружающей газовой среды. Однако эта гипотеза, наделавшая в своё время много шума, не подтвердилась. Фотографии «Маринера-9» показали, что Фобос и Деймос имеют вид громадных каменных глыб. Наблюдения «Маринера-9» показали, что оба спутника обращены к Марсу одной стороной (как Луна к Земле). Для установления такого вращения достаточно Только сотен тысяч лет для Фобоса в виду его близости к Марсу. Непосредственные фотографии, фотоэлектрические и поляризационные наблюдения указывают на то, что наружный слой поверхности обоих спутников – мелко раздробленная пыль, слой которой имеет толщину около 1 мм. Её состав, по-видимому, базальтовый со значительной примесью карбонатов. Инфракрасные наблюдения свидетельствуют о крайне низкой теплопроводности наружного покрова, что подтверждает гипотезу о пылевом слое. АТМОСФЕРА И ФИОЛЕТОВЫЙ СЛОЙ МАРСА. В тоже великое противостояние 1909г., когда Французский астроном Антониади наблюдал Марс в 83-сантиметровый рефрактор Медонской обсерватории, в другом месте земного шара были впервые получены снимки Марса со светофильтрами. Этим местом была Пулковская обсерватория, где тогда ещё молодой русский учёный Гавриил Андрианович Тихонов. Г. А. Тихонову удалось получить большую серию снимков Марса с различными светофильтрами от красного до зелёного. Их обработка позволила обнаружить три явления, получившие названия «эффектов Тихонова». 1. «Моря» Марса кажутся особенно тёмными в красный светофильтр и сравнительно слабее выделяются на фоне материков в зелёный светофильтр. Иначе говоря, контраст между «морями» и материками увеличивается с переходом от зелёных лучей к красным. 2. Полярные шапки резче всего выделяются на фоне материков в зелёных лучах и значительно слабее в красных. 3. Резкость деталей на диске планеты постепенно снижаются к краю диска; это явление особенно заметно на снимках, сделанных в зелёных лучах и гораздо слабее в красных. В 1924г. в год великого противостояния снимки Райта и Росса не только подтверждали результаты Тихонова, но и позволили обнаружить два новых эффекта. Во-первых, в синих, фиолетовых и ультрафиолетовых лучах никакие детали поверхности не просматривались: были видны только полярные шапки. Во-вторых, диаметр диска Марса в фиолетовых лучах был заметно больше, чем в красных. Это явление получило название эффекта Райта. Разность диаметров диска Марса в ультрафиолетовых и инфракрасных лучах на снимке Райта и Росса достигала 200-300 км. Если это результат рассеивания солнечных лучей в плотной атмосфере Марса, то её высота должна быть равна половине этой величины, т.е. 100-150 км. Отсюда Райт сделал вывод, что Марс окружён весьма плотной и протяжённой атмосферой. Советские астрономы-фотометристы Н. П. Барабашов и В. В. Шаронов в1950 году дали объяснение эффекта Райта. Дело было всё-таки в фотографической иррадиации, но в сочетании с законом падения яркости к краю диска Марса. В красных лучах яркость падает к краям диска довольно сильно, поскольку мы наблюдаем здесь шарообразную поверхность планеты. Наоборот, в фиолетовых лучах, диск Марса кажется освещённым более равномерно, и его края довольно ярки. Поэтому в фиолетовых лучах иррадиация будет сильнее, чем в красных, что и вызовет эффект Райта. Объяснение эффекта Райта Н. П. Барабашовым и В. В. Шароновым было совершенно правильным, за одним исключением. Распределение яркости по диску Марса в фиолетовых лучах они приписывали целиком рассеянию света в атмосфере Марса. В действительности же главную роль здесь играли фотометрические свойства поверхности планеты. В 1972 г. проблемой фиолетового слоя занялся американский астроном Д. Томпсон. Изучив всю имевшуюся литературу по этой проблеме и использовав фотографическую коллекцию Международного планетного патруля, Томпсон пришёл к простому и неожиданному выводу. Вид Марса в фиолетовых лучах – это его нормальный вид, без всякой дымки. Просто в этих лучах контрасты между морями и материками слишком малы и мы их не различаем. Более того, из наблюдений в ультрафиолетовых лучах выяснилось, что в этих лучах всё выглядит «наоборот»-моря кажутся светлее материков. Эти явления объясняются исключительно цветовыми особенностями пород, слагающих марсианские моря и материки, и атмосфера тут не при чём. Так разрешилась проблема фиолетового слоя. ТЕМПЕРАТУРНЫЙ РЕЖИМ ПЛАНЕТЫ. Первые измерения температуры Марса с помощью термометра, помещённого в фокусе телескопа-рефлектора, проводились ещё в начале 20-х годов. Измерения В. Лампланда в 1922г. дали среднюю температуру поверхности Марса 245°К (-28°С), Э. Петтит и С. Никольсон получили в 1924г. 260°К (-260°С). Более низкое значение получили в 1960г. У. Синтон и Дж. Стронг: 230°К (-43°С). Позднее, в 50-е и 60-е гг. были накоплены и обобщены многочисленные измерения температур в различных точках поверхности Марса, в разные сезоны и времена суток. Из этих измерений следовало, что днём на экваторе температура может доходить до 300°К (+27°С), но уже к вечеру она падает до нуля, а к утру до 223°К (-50°С). На полюсах температура может колебаться от +10°С в период полярного дня до очень низких температур во время полярной ночи. В 1956 г. к измерению температур был применён новый метод – радиоастрономический. Марс, как и всякое нагретое тело, испускает не только инфракрасное излучение, но и более длинноволновое, лежащее в радиодиапазоне. Его принято называть тепловым радиоизлучением, в отличие от нетеплового, связанного с различными электромагнитными и плазменными процессами. Измеряя поток теплового радиоизлучения, можно определить температуру планеты. Первые такие измерения выполнили К. Майер, Т. Мак Каллаф и Р. Слонейкер в 1956 г. Они получили среднюю температуру поверхности Марса 218°К, т.е. заметно ниже, по инфракрасному излучению. Измерения, проведённые в последние годы с космических кораблей, показали, что на Марсе могут наблюдаться и ещё более низкие температуры, доходящие до 140°К - ниже точки замерзания углекислого газа. Многочисленные ряды измерений радиотемператур Марса выполнены советскими учёными А. Д. Кузьминым, Ю. Н. Ветухновской, Б. Я. Лосовским, Б. Г. Кутузой и другими. Во время великого противостояния 1971 г., по их измерениям, средняя температура Марса составляла 198°К. Различие температур дня и ночи, полярных и тропических районов, зимы и лета приводит к возникновению ветров, имеющих подчас скорости 40-50 м\сек. Система воздушной циркуляции на Марсе изучается сейчас различными методами многими учёными. Важный вклад в развитие теории циркуляции марсианской атмосферы внёс советский учёный, специалист по физике атмосферы Г. С. Голицин. Он показал, при каких условиях в атмосфере Марса могут возникать ветры, имеющие силу урагана, и формироваться смерчи. Среди образований, обнаруженных на поверхности Марса, всеобщее внимание русло образные протоки, или меандровые долины. Их внешний вид, наличие «притоков» вряд ли можно объяснить иначе, чем, предложив, что это – русла рек. Однако на Марсе в настоящее время реки течь не могут, там вообще не может быть жидкой воды. Причина этого состоит в том, что при тех низких давлениях, которые господствуют на Марсе, вода закипает при очень низких температурах. Никакая другая жидкость не могла образовать наблюдаемых русел: лава быстро застывает, а жидкая углекислота даже в земных условиях не может существовать. Итак, единственное возможное объяснения меандров на Марсе – это образование водных потоков, рек. Сейчас для него нет необходимых условий – значит, они были в прошлом. Для этого нужно допустить, что в более ранние эпохи атмосферное давление на Марсе было значительно выше, чем в настоящее время. БОЛЬШАЯ ПЫЛЕВАЯ БУРЯ И ЕЁ ПРИЧИНЫ. В июле 1971 г., согласно наблюдениям на Шемахинской астрофизической обсерватории атмосфера планеты была во всех длинах волн, и в ней не наблюдалось ни синих, ни жёлтых облаков. Южная полярная шапка чётко выделялась на фоне материков, превышая их по яркости втрое. Была видна и северная полярная шапка. Контраст морей и материков в красных лучах составлял около 30% и был примерно таким, как в первой половине августа 1956 г., до начала пылевой бури. В конце августа – начале сентября 1956 г. в южном полушарии разыгралась сильная пылевая буря, скрывшая на две недели южную полярную шапку и резко понизившая контрасты «моря-материки». Новая пылевая буря, только ещё большего масштаба, разыгралась на Марсе во второй половине сентября 1971 г. В отличие от 1956 г., на этот раз пылевая буря была более длительной и устойчивой. Она началась 22 сентября, а 11 ноября, когда «Маринер-9» на подлёте начал фотографировать Марс, пылевая буря продолжалась. Она была столь интенсивной, что, по отзывам американских специалистов, планета имела «венероподобный вид». 15-20 ноября наступило, казалось, просветление. Но потом всё началось снова, и буря затрудняла научные иследования поверхности Марса. Лишь около 10 января 1972 г. пылевая буря прекратилась, и планета приняла свой обычный вид. Какие же причины вызвали столь мощную и пылевую бурю? Американские учёные К. Саган, Дж. Веверка и П. Гираш на основании теоретического исследования ветровых режимов на Марсе пришли к выводу, что наиболее эффективным механизмом подъёма пыли с марсианской поверхности являются смерчи или «пылевые дьяволы». Образование смерчей зимой невозможно из-за слабого солнечного нагрева. Летом и в экваториальных районах на плоских пространствах смерчи должны образовываться благодаря интенсивной инсоляции, на склонах же их могут подавлять наклонные ветры. Для подъёма пыли нужна скорость ветра в 80м\сек. На Марсе имеются области, где такие скорости наблюдаются. Смерчи образуются преимущественно вблизи перигелия, когда интенсивность инсоляции на 23% больше, чем во время «среднего» противостояния, и на 47% больше, чем в афелии. Вот почему чаще всего пылевые бури бывают в периоды великих противостояний, когда лето в южном полушарии совпадает с прохождением Марса через перигелий. Астрономы ожидали новую пылевую бурю в июле-августе 1973 г., когда Марс должен был снова пройти через перигелий, но буря «опоздала» – она началась лишь 13 октября появлением трёх пылевых облаков. По мнению американских астрономов пылевая буря 1973 г., продолжавшаяся до ноября, уступает лишь большой пылевой буре 1971 г. и превосходит бурю 1956 г. Исследование рельефа Марса радиолокационным методом и по интенсивности полос СО2 в спектре планеты над различными областями подтверждают предположения о том, что моря - не низины, как считали Поллак и Саган, в области перепадауровней. Материки покрыты слоем тонко раздробленной светлой пыли, моря – более крупными зёрнами, возможно, иного состава. Таково в настоящее время наиболее вероятное объяснение природы марсианских «морей». | |
| |
Просмотров: 7985 | Комментарии: 2 | |
Всего комментариев: 2 | |
| |